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Researchers may be interested in the scores produced by measuring instruments only to the 
extent that they can be used to test a proposed hypothesis. However, a critical first step in using a 
measuring instrument is to conduct an examination of its psychometric properties, such as 
reliability and validity. The investigation of the psychometric properties of an instrument should 
be undertaken even when the purpose of the research is not necessarily focused on the investigation 
of the psychometric properties. Researchers need to be certain that the scores obtained from any 
instrument are useful. This is critical as measurement properties are not inherent qualities of tests 
but rather of scores (Zangaro, 2019). As such, measuring instruments can have different properties 
in different applications and with different samples in different contexts. One such property of 
measuring instruments is validity, which refers to the extent that a measuring instrument actually 
measures the construct it claims to measure (Clark & Watson, 1995). 

Construct validity is a type of validity that is often examined by use of confirmatory factor analysis 
(CFA) (Brown & Moore, 2012). If the hypothesised underlying structure of an instrument is 
replicated, the replication is considered indicative of construct validity. However, it should be 
noted that confirming that the structure of an instrument holds is only one part of validity. It is 
necessary to show that an instrument has both internal and external validity before using the 
instrument in practice. 

In CFA, the scale items are regarded as observed measurements and the hypothesised factors 
are regarded as latent variables. If an instrument is hypothesised to have a total score and subscale 
scores, CFA will typically be used to examine several models of the structure of the instrument to 
determine which models best fits the data. Studies generally compare three conceptualisations of the 
factor structure of an instrument that is hypothesised to consist of a total scale and several subscales: 
a one-factor model, a second-order factor model and a bifactor model (see Figure 1). For example, 
Reynolds and Keith (2017) used a one-factor model, a second-order factor model and a bifactor model 
to examine the structure of the Wechsler Intelligence Scale for Children.

In the one-factor model, all items load on a total scale score. In the bifactor model, however, items 
load on both a total scale score (referred to as the ‘general factor’) and several subscale scores 
(referred to as ‘specific factors’: Reise et al., 2013). In the second-order model, items load first on 

This brief article attempts to describe the importance of relying not just on model fit indices, 
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several subscales, and the subscale scores in turn load on a 
total scale. Therefore, the relationship between the total scale 
and the observed items is mediated by the subscales in the 
second-order model (Brown & Moore, 2012). 

Many researchers rely solely on model fit indices to compare 
and select the best-fitting model (Morgan et al., 2015). The 
most common fit indices are the chi-squared (χ2), root mean 
square error of approximation (RMSEA), comparative fit index 
(CFI), standardised root mean square residual (SRMR), 
Tucker–Lewis Index (TLI), Goodness-of-Fit Index (GFI), 
Relative Fit Index (RFI), Normed Fit Index (NFI), Bollen’s Fit 
Index (BL89) and Akaike’s information criterion. If the fit 
indices indicate that the one-factor model is the best fit for the 
data, researchers often conclude that the scale is unidimensional, 
whereas fit indices that support either a second-order or 
bifactor model are taken as evidence of multidimensionality. 
However, Rodriguez et al. (2016b) have called these conclusions 
an ‘overly simplistic conceptualization of the dimensionality 
of psychological data’ (p. 231). There is also growing scepticism 
about relying on fit indices alone. For example, Morgan et al. 
(2015) describes these fit indices as useful but cautions that ‘the 
exclusive use of approximate fit statistics is perilous’ (p. 17). 
Judgements about the dimensionality of a measuring 
instrument based solely on model fit indices are problematic 
for two reasons. Firstly, it has been demonstrated that these 
indices generally favour bifactor models even in instances 
where the item loadings on general and specific factors may be 
relatively low (Bornovalova et al., 2020). Secondly, model fit 
indices fail to capture the relative strength of the general factor 
and specific factors (Reise et al., 2013).

If model fit indices support the bifactor model as the best 
fit, at least three possible conclusions can be drawn: (1) the 
instrument is essentially unidimensional, because the 
specific factors do not account for specific unique variance 
other than that explained by the general factor; (2) some 
limited evidence of multidimensionality exists, but is not 
sufficient to exclude a unidimensional interpretation; or 
(3) the specific factors account for sufficient reliable 
variance in addition to the variance accounted for by 
the general factor to support the interpretation of the 
instrument as multidimensional. To examine the 
dimensionality of an instrument, Rodriguez et al. (2016a) 
have urged researchers to calculate ancillary bifactor 
indices in addition to model fit indices. Ancillary bifactor 
indices include explained common variance (ECV), Omega 
hierarchical (OmegaH) and percentage of uncontaminated 
correlations (PUC). Indices such as these enable an 
evaluation of dimensionality. It is also possible to compute 
McDonald’s omega: a model-based estimate of reliability. 
Explained common variance refers to the percentage of 
variance amongst all items that can be explained by 
each factor (ECV for general factor and ECV _S for 
specific factors). Percentage of uncontaminated correlations 
measures the number of unique correlations amongst items 
that can be explained by the general factor alone. OmegaH 
measures the proportion of systematic variance in total 
scores that can be attributed to individual differences on 
the general factor (Rodriguez et al., 2016a).

The purpose of this commentary is to demonstrate the 
importance of calculating ancillary bifactor indices in 
addition to model fit indices to examine the dimensionality 
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FIGURE 1: Three conceptualisations of the factor structure of a hypothetical eight-item scale. (a) One-factor model, rectangles are observed variables. Ellipse is latent 
variable; (b) Second-order factor model and (c) bifactor model.
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of an instrument. To this end, bifactor indices were calculated 
for three published papers that concluded that a bifactor 
model was the best fitting model for the study data. 

Method
Three published studies were selected to demonstrate the 
three possible outcomes of examining the dimensionality of 
an instrument, as described in the introduction. The studies 
are described below:

Padmanabhanunni (2017) examined the factor structure of the 
Normative Beliefs about Aggression Scale (NOBAGS: 
Huesmann et al., 2011). A CFA confirmed that a bifactor model 
with a total scale (approval of aggression) and two subscales 
(retaliation beliefs and general beliefs) was the best fitting 
model (χ2 > 0.05, GFI, RFI, NFI > 0.95 and RMSEA = 0.05).

Heppner et al. (2002) examined the generalisability of 
problem-solving appraisal amongst black South Africans 
and investigated the psychometric properties of the Problem 
Solving Inventory (PSI: Heppner, 1988). The results of CFA 
(χ2 < 0.05, CFI > 0.95, NFI > 0.90, BL89 > 0.95 and RMSEA = 
0.08) supported the hypothesised bifactor structure of the PSI 
as a total scale of problem-solving appraisal and three 
subscales (problem-solving confidence, approach-avoidance 
style and personal control).

Norr et al. (2015) examined a bifactor model of the 
Cyberchrondria Severity Scale (CSS: McElroy & Shevlin, 
2014) which assesses anxiety and behaviours associated with 
seeking online health information. A CFA confirmed a 
bifactor structure (χ2 > 0.05, CFI > 0.95, RMSEA = 0.07) 
consisting of a total cyberchondria scale and four subscales 
(reassurance, excessiveness, distress and compulsion).

Analysis
The standardised regression loadings reported in the three 
studies were used to calculate the bifactor indices necessary 
to assess the instruments’ dimensionality. The Bifactor 
Indices Calculator (Dueber, 2017) was used for these 
calculations. The existing literature provides guidelines 
regarding the interpretation of these indices. Explained 
common variance provides an indication of the relative 
strength of factors, such that a higher ECV (>0.80: Rodriguez 
et al., 2016b) is associated with a strong general factor and 
indicates that the instrument is essentially unidimensional. 
OmegaH indicates the proportion of systematic variance in 
total scores that is attributable to individual differences on 
the general factor. It has been suggested by Rodriguez et al. 
(2016b) that an OmegaH greater than 0.80 indicates that the 
instrument is essentially unidimensional. Finally, it has also 
been recommended that researchers consider ECV and 
OmegaH in conjunction with PUC, and Reise et al. (2013) 
suggest that PUC values lower than 0.80, together with 
general ECV values greater than 0.60 and OmegaH of the 
general factor greater than 0.70 would indicate that the 
presence of some multidimensionality that is not strong 

enough to rule out the interpretation of the instrument as 
essentially unidimensional. 

Results
The results of the ancillary bifactor analyses are reported in 
Table 1.

In the Padmanabhanunni (2017) study, the general factor of 
the NOBAGS accounted for 54% of the common variance, 
and the two specific factors accounted for 46% of the common 
variance (20% and 26%, respectively). OmegaH was 0.60, 
well below the cut-off of 0.80 suggested by Rodriguez et al. 
(2016b). When considered with PUC, the ECV of the general 
factor was below 0.60 and OmegaH was below 0.70. These 
bifactor indices clearly support the interpretation of the 
NOBAGS as multidimensional.

In the Heppner et al. (2002) study, the general factor of the 
PSI accounted for 63% of the variance, and the three specific 
factors accounted for 14%, 6% and 16% of the variance, 
respectively. OmegaH was below 0.80, which suggests 
that the instrument may have some multidimensionality. 
However, when considered with PUC, ECV was greater 
than 0.60, OmegaH was greater than 0.70 and PUC was 
lower than 0.80. These findings indicate that there is some 
evidence of multidimensionality, but the evidence is not 
strong enough to overrule the interpretation of the PSI as 
unidimensional.

Finally, in the Norr et al. (2015) study, the general factor of the 
CSS accounted for 80% of the variance, and just 20% of 
the variance was explained by the four specific factors. 
The variance explained by each of the four specific factors 
ranged from 3% to 7%. OmegaH was above 0.80, which 
indicates that this instrument is essentially unidimensional. 
Its unidimensionality was further confirmed when PUC, 
ECV and OmegaH were considered together (PUC < 0.80, 
ECV > 0.60 and OmegaH > 0.70).

Conclusion
The aim of this commentary was to demonstrate that model fit 
indices alone provide insufficient evidence to draw conclusions 

TABLE 1: Bifactor indices for three studies.
Bifactor indices Padmanabhanunni 

(2017)
Heppner et al. 

(2002)
Norr et al. (2015)

ECV_GF 0.54 0.63 0.80
ECV_s1 0.20 0.14 0.06
ECV_s2 0.26 0.06 0.07
ECV_s3 - 0.16 0.03
ECV_s4 - - 0.05
OmegaH 0.60 0.75 0.93
PUC 0.60 0.72 0.77

Note: Padmanabhanunni = 2 specific factors (retaliation beliefs and general beliefs), Heppner 
et al. = 3 specific factors (problem-solving confidence, approach-avoidance style and 
personal control), Norr et al. = 4 specific factors (reassurance, excessiveness, distress 
and compulsion.
ECV_GF, explained common variance for general factor; ECV_s, explained common 
variance specific factor; OmegaH, Omega Hierarchical; PUC, percent of uncontaminated 
correlations.

http://www.ajopa.org�


Page 4 of 4 Original Research

http://www.ajopa.org Open Access

about the dimensionality of a measuring instrument. Three 
published papers that drew such conclusions based on fit 
indices of a bifactor model were subjected to ancillary bifactor 
analyses, in which ECV, OmegaH and PUC were used to 
determine the relative strength of the general factor and 
the specific factors. These analyses indicated that one 
instrument (NOBAGS) demonstrated sufficient evidence of 
multidimensionality. One instrument (PSI) demonstrated some 
evidence of multidimensionality, but the evidence was not 
strong enough to rule out the possibility of the instrument being 
unidimensional. The third instrument (CSS) did not demonstrate 
evidence of multidimensionality and was determined to be 
essentially unidimensional. These findings highlight the 
insufficiency of solely relying on CFA model fit indices to draw 
conclusions about the hypothesised structure of a measuring 
instrument. The model fit indices for these three studies, 
reported in the methods section above, showed acceptable fit 
indices for all three studies. However, the bifactor indices 
demonstrated that the assumption of multidimensionality is 
not tenable. Researchers, investigating bifactor models are 
urged to go beyond model fit indices and investigate the pattern 
of item loadings as well as calculating ancillary bifactor indices.
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